Inner horns for 2-quasi-categories
نویسندگان
چکیده
منابع مشابه
The 2-category theory of quasi-categories
In this paper we re-develop the foundations of the category theory of quasicategories (also called ∞-categories) using 2-category theory. We show that Joyal’s strict 2-category of quasi-categories admits certain weak 2-limits, among them weak comma objects. We use these comma quasi-categories to encode universal properties relevant to limits, colimits, and adjunctions and prove the expected the...
متن کاملApproximately Quasi Inner Generalized Dynamics on Modules
We investigate some properties of approximately quasi inner generalized dynamics and quasi approximately inner generalized derivations on modules. In particular, we prove that if A is a C*-algebra, is the generator of a generalized dynamics on an A-bimodule M satisfying and there exist two sequences of self adjoint elements in A such that for all in a core for , , then is approx...
متن کاملRigidification of Quasi-categories
We give a new construction for rigidifying a quasi-category into a simplicial category, and prove that it is weakly equivalent to the rigidification given by Lurie. Our construction comes from the use of necklaces, which are simplicial sets obtained by stringing simplices together. As an application of these methods, we use our model to reprove some basic facts from [L] about the rigidification...
متن کاملA Model Structure for Quasi-categories
Quasi-categories live at the intersection of homotopy theory with category theory. In particular, they serve as a model for (∞, 1)-categories, that is, weak higher categories with n-cells for each natural number n that are invertible when n > 1. Alternatively, an (∞, 1)-category is a category enriched in ∞-groupoids, e.g., a topological space with points as 0-cells, paths as 1-cells, homotopies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107003